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Drug-Induced Liver Injury 
 

 Leading cause of acute liver failure1 

 High morbidity & mortality2 

 Main reason for late stage termination or withdrawal2 

 76 drugs found to be significant cause of hepatotoxicity 
across 3 DILI Registries (US, Sweden, Spain)3 

 

 Current in vitro technologies: 
 Physiological gap between incubations and liver 
 Lack of physiological integration for 

amplification/adaptation 
 Inability to assess how minor chemical stress leads to 

major toxicity in some people 

1 Lee AASLD, 2009; 2 Verma & Kaplowitz 2009; 3 Suzuki et al., 2010 

Require novel translational in vitro models of hepatoxicity 
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Mathematical modelling to improve and 
optimize the design of 3D liver in vitro models 
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An in vitro hepatic sinusoid: hollow 
fibre bioreactor 
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Challenge 5: IVIVE https://www.crackit.org.uk/challenge-5-ivive 



Hollow Fibre Bioreactor 
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Advantages: 
• In-vivo like culture system  
  - Its possible to generate oxygen and nutrient 
gradients 
• Cells are shielded from shear stress 
• Superior mass transport  
• High cell densities 

Disadvantages: 
• Fiddly to set-up 
• Low throughput 



Develop a zonated hepatic hollow fibre bioreactor for 
chemical safety assessment 
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Role of Mathematics 

•  Aid design and development 
•  Set operating conditions 
•  Experimental design 

 
 
 

•  Interpret data 
•  Compare other in vitro systems 
•  Aid quantification 

 
 

 
•  Extrapolate from in vitro to in vivo 



In silico hepatocyte 

Kim et al., 1992; McPhail et al., 1993 

Parameterized & validated using data from 
in house and literature 
 
Modelling directs ‘wet-lab’ research 
 
Allows visualization of  enzyme capacity 
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In silico hepatocyte sinusoid 

HFB Considerations: 
Physical dimensions 
Membrane properties 
Flow rate 
Inlet oxygen concentration 
 
 
 
 
 

Cell considerations: 
Density 
Oxygen consumption 
Drug uptake/metabolism  
 
 



Oxygen and drug transport in HFB 



Mathematical predictions – 
Oxygen Gradient in HFB 

HFB set-up optimised via mathematical predictions 
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Mathematical modelling to improve and 
optimize the design of 3D liver in vitro models 



Gaskell et al, 2016. Toxicology Research.  
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Seahorse Technology 
• Monitors OCR and ECAR in live cells 
• OCR: oxygen consumption rate (OXPHOS) 
• ECAR: extracellular acidification rate (glycolysis) 

Amy Chadwick & Laleh Kamalian 

Maximum O2 consumption rates:  
Fresh human Hep: 
          𝑉𝑚𝑎𝑥= 7.8 × 10−3 𝑚𝑜𝑙 𝑚−3𝑠−1 
HepG2/C3A: 
          𝑉𝑚𝑎𝑥= 19.6 × 10−3 𝑚𝑜𝑙 𝑚−3𝑠−1 
Half maximal O2 concentration: 
             𝐾𝑚= 6.24 × 10−3𝑚𝑜𝑙 𝑚−3 

Ingredients for a mathematical model 



FLIM imaging technique 
 

Intracellularly loaded nanoprobes emit 
phosphorescence that decays in the presence 
of oxygen.  

 

Greater lifetime value   
= lower decay rate  
= less oxygen.  

HeLa cells 

Leedale, J et al (2014), Math BioSci, 258:33-43 

Ingredients for a mathematical model 



  
 

INSIDE the Sphere 

C : Oxygen concentration 
D1, D2 : Diffusion inside/outside the spheroid 
Vmax : Max consumption rate (constant) 
Km: Half maximal concentration. 

 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 𝐷1∇2𝐶 −
𝑉𝑚𝑎𝑥 𝐶

𝐶+𝐾𝑚
= 0  𝑟 ≤ R, 

 𝜕𝐶

𝜕𝑟
= 0,       𝑟 = 0.    

 

 

 

 

 𝐷2∇2𝐶 = 0  ∞ ≥ 𝑟 ≥ R, 

 𝐶 → 𝐶∞ ,       𝑟 → ∞. 
 

Time equilibrium system, 
spherical coordinates and 
radial symmetry:  

OUTSIDE the Sphere 

DIFFUSION RATE INSIDE THE SPHEROID: 
𝐷1 = 3.84 to 4.23 × 104 μm2min−1 
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𝐶∞ =  3% O2 

𝐶∞ =  8% O2 

 

Ingredients for a mathematical model 

Leedale, J et al (2014), Math BioSci, 258:33-43 



21% O2 

13% O2 
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V1 V1 Working vol per well 360ml 

V2 Media vol 100ml 

r1 Well radius @ top 3.429mm 
h Depth of well 11.303mm 

a Well radius @ bottom 3.175mm 
l Spherical cap height 1.6mm 

r2 Media radius @ top 3.2338mm 
p Media depth 3.848mm 

Ingredients for a mathematical model 



Time equilibrium system, cylindrical coordinates and radial symmetry, C(r,z):  
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Dirichlet BC: 
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DIFFUSION RATE OUTSIDE SPHEROID: 
𝐷2 = 1.15 to 1.28 × 105 μm2min−1 
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O2 diffusion in media 

Diffusion rate determined from 
exp fitting by Joe Leedale in 
(2014), Math BioSci, 258:33-43 

O2 diffusion and consumption 
by cells inside spheroid 

Ingredients for a mathematical model 



V2=Media vol=100l, 
Spheroid radius 130m 
HepG2/C3A cells 

Model predictions 
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21% O2 
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Hepatic portal vein O2 = 13% 

Central vein O2 = 4% 

Hypoxia O2 = 1% 

Model predictions 



O2 = 13% 

O2 = 4% 

O2 = 1% 

Model predictions: assay sensitivity 
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Mathematical modelling to improve and 
optimize the design of 3D liver in vitro models 
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Mathematical modelling to improve and 
optimize the design of 3D liver in vitro models 

Sean McGinty 



Navier-Stokes equations for the fluid and a 
convection-diffusion equation for the oxygen 
concentration:  

A monolayer of of cells is included at the 
lower boundary. Oxygen obeys a reaction-
diffusion model: 

Boundary conditions: 
Inlet: constant concentration 
Outlet: normal flux 
Zero flux conditions everywhere else 

u=flow velocity, r = (const) fluid density, p=pressure, 
m=dynamic viscosity, c=O2 conc, D=diff coeff in fluid.  

Vmax= max cell O2 consumption rate, Km=half maximal O2 
conc, Dg=diff coeff in cell layer. 

Mathematical modelling of the Kirkstall 
Quasi-Vivo system: QV900 



Result for Q = 180uL/min. Top left: O2 concentration profile. Top right: Flow profile. 
Bottom left: O2 concentration at the cell surface. Bottom right: Shear stress at the 
cell surface. 
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Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



 Question: can we capture an O2 range of 13%-4% at the cell layer 
in a single pot? 
 
 

Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



 Question: can we capture an O2 range of 13%-4% at the cell layer 
in a single pot? 

 
 Explored flow rates ranging from 60-1000ul/min. 
 Gives O2 ranges from 3.9%-6.9% to 10.4%-12.2%. 
 Shear stress ranges from 1e-5 to 7e-4 N/m2 

 Increasing height of cells in pots increases min & max O2 
as well as shear stress.  

 
 

Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



 Question: can we capture an O2 range of 13%-4% at the cell layer 
in a single pot? 

 
 
 

 Question: can we capture an O2 range of 13%-4% at the cell layer 
across multiple pots? 
 
 
 

Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



Result for Q = 180uL/min. Left: O2 concentration profile. Right: Flow profile. 

Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



Result for Q = 180uL/min. Left: O2 concentration at the cell surface. Right: Shear 
stress at the cell surface. 
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Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



 Question: can we capture an O2 range of 13%-4% at the cell layer 
in a single pot? 

 
 

 
 Question: can we capture an O2 range of 13%-4% at the cell layer 

across multiple pots? 
 

 O2 profiles, shear stress very similar in each chamber.  
 
 
 

Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



 Question: can we capture an O2 range of 13%-4% at the cell layer 
in a single pot? 

 
 

 
 Question: can we capture an O2 range of 13%-4% at the cell layer 

across multiple pots? 
 

 
 

 Question: can we exploit the vertical O2 gradient in the pots? 

Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



Result for Q = 180uL/min. Cell surface raised by 7mm, 3mm and 1mm in pots. Left: 
O2 concentration profile. Right: Flow profile.  

Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



Result for Q = 180uL/min. Cell surface raised by 7mm, 3mm and 1mm in pots. Left: 
O2 concentration at the cell surface. Right: Shear stress at the cell surface. 
 
O2 ranges: pot 1, 9%-11.5%; pot 2, 7%-10%; pot 3, 5%-7.7% 
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Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



 Question: can we capture an O2 range of 13%-4% at the cell layer 
in a single pot? 

 
 

 
 Question: can we capture an O2 range of 13%-4% at the cell layer 

across multiple pots? 
 

 
 
 Question: can we exploit the vertical O2 gradient in the pots? 

 
 

 O2 ranges: pot 1, 9%-11.5%; pot 2, 7%-10%; pot 3, 5%-
7.7%.  
 
 

Mathematical modelling of the Kirkstall 
Quasi-Vivo QV900 system 



Kirkstall QV – Zonated Liver Adaptation 

Expression of 
“zonation marker” 
proteins, following 6 
days growth. Static 
control included. 
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