

CRACK-IT Challenge: Improved *in vitro* to *in vivo* extrapolation in chemical safety risk assessment of human systemic toxicity

Steve Webb

Liverpool John Moores University

S.D.Webb@LJMU.ac.uk

National Centre for the Replacement Refinement & Reduction of Animals in Research

Workshop: Applying exposure science to increase the utility of non-animal data in efficacy and safety testing

Drug-Induced Liver Injury

- Leading cause of acute liver failure¹
- High morbidity & mortality²
- Main reason for late stage termination or withdrawal²
- 76 drugs found to be significant cause of hepatotoxicity across 3 DILI Registries (US, Sweden, Spain)³
- Current in vitro technologies:
 - Physiological gap between incubations and liver
 - Lack of physiological integration for amplification/adaptation
 - Inability to assess how minor chemical stress leads to major toxicity in some people

Require novel translational in vitro models of hepatoxicity

¹ Lee AASLD, 2009; ² Verma & Kaplowitz 2009; ³ Suzuki et al., 2010

Replicating Liver Physiology for toxicology

Mathematical modelling to improve and optimize the design of 3D liver in vitro models

An in vitro hepatic sinusoid: hollow fibre bioreactor

Challenge 5: IVIVE https://www.crackit.org.uk/challenge-5-ivive

Hollow Fibre Bioreactor

Wall depth≈ 200 µm

Lumen diameter $\approx 400 \ \mu m$

Disadvantages:

- Fiddly to set-up
- Low throughput

Advantages:

- In-vivo like culture system
- Its possible to generate oxygen and nutrient gradients
- Cells are shielded from shear stress
- Superior mass transport
- High cell densities

Develop a zonated hepatic hollow fibre bioreactor for chemical safety assessment

Role of Mathematics

- Aid design and development
- Set operating conditions
- Experimental design

- Interpret data
 - Compare other in vitro systems
 - Aid quantification

In silico hepatocyte

٩

0

٩

DRES

In silico hepatocyte sinusoid

HFB Considerations:

Physical dimensions Membrane properties Flow rate Inlet oxygen concentration **Cell considerations:** Density Oxygen consumption Drug uptake/metabolism

Oxygen and drug transport in HFB

HFB set-up optimised via mathematical predictions

Mathematical modelling to improve and optimize the design of 3D liver in vitro models

Toxicology Research

PAPER

this: DOI: 10.1039/c6tx00101g

25

20.

15

10

5

0-0

5

10

Urea (nmol/ml)

Harriet Gaskell

100 um

model†

Zonation

Characterization of a functional C3A liver sphere

Harriet Gaskell,^{a,b} Parveen Sharma,*^a Helen E. Colley,^c Crai

Dominic P. Williams^b and Steven D. Webb^d

Polarisation

Liver-specific function

15

25

20 Culture time (days) 30

35

Gaskell et al, 2016. Toxicology Research.

$\begin{array}{l} \underline{\text{Maximum O}_2 \text{ consumption rates:}} \\ \hline \text{Fresh human Hep:} \\ V_{max} = 7.8 \times 10^{-3} \ mol \ m^{-3} s^{-1} \\ \hline \text{HepG2/C3A:} \\ V_{max} = 19.6 \times 10^{-3} \ mol \ m^{-3} s^{-1} \\ \hline \text{Half maximal O}_2 \ \text{concentration:} \\ K_m = 6.24 \times 10^{-3} \ mol \ m^{-3} \end{array}$

Seahorse Technology

- Monitors OCR and ECAR in live cells
- OCR: oxygen consumption rate (OXPHOS)
- ECAR: extracellular acidification rate (*glycolysis*)

Amy Chadwick & Laleh Kamalian

Time equilibrium system, spherical coordinates and radial symmetry:

INSIDE the Sphere

$$D_1 \nabla^2 C - \frac{V_{max} C}{C + K_m} = 0 \qquad r \le \mathbf{R},$$
$$\frac{\partial C}{\partial r} = 0, \qquad r = 0.$$

C: Oxygen concentration

- D_1 , D_2 : Diffusion inside/outside the spheroid
- *V_{max}* : Max consumption rate (constant)
- K_m : Half maximal concentration.

OUTSIDE the Sphere

$$D_2 \nabla^2 C = 0 \qquad \qquad \infty \ge r \ge \mathbf{R},$$

$$C \to C_{\infty}, \qquad \qquad r \to \infty.$$

DIFFUSION RATE INSIDE THE SPHEROID: $D_1 = 3.84$ to $4.23 \times 10^4 \,\mu\text{m}^2\text{min}^{-1}$

Leedale, J et al (2014), Math BioSci, 258:33-43

V1	Working vol per well	360ml
V2	Media vol	100ml
r1	Well radius @ top	3.429mm
h	Depth of well	11.303mm
а	Well radius @ bottom	3.175mm
I	Spherical cap height	1.6mm
r2	Media radius @ top	3.2338mm
р	Media depth	3.848mm

Time equilibrium system, cylindrical coordinates and radial symmetry, C(r,z):

Model predictions

Model predictions

Model predictions: assay sensitivity

Mathematical modelling to improve and optimize the design of 3D liver in vitro models

Mathematical modelling to improve and optimize the design of 3D liver in vitro models

Hepatospheres

Navier-Stokes equations for the fluid and a convection-diffusion equation for the oxygen concentration:

Boundary conditions: Inlet: constant concentration Outlet: normal flux Zero flux conditions everywhere else

A monolayer of of cells is included at the lower boundary. Oxygen obeys a reactiondiffusion model:

$$\nabla \mathbf{.u} = 0$$

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \mu \nabla^2 \mathbf{u}$$

$$\frac{\partial c}{\partial t} + (\mathbf{u} \cdot \nabla) c = D \nabla^2 c$$

u=flow velocity, r = (const) fluid density, *p*=pressure, *m*=dynamic viscosity, $c=O_2$ conc, *D*=diff coeff in fluid.

$$\frac{\partial c}{\partial t} = D_g \nabla^2 c - \frac{V_{\max} c}{K_m + c}$$

 V_{max} = max cell O₂ consumption rate, K_m =half maximal O₂ conc, D_q =diff coeff in cell layer.

Height (m)

Concentration (mol/m³)

0.062

0.056

0.054 0.052

0.05

0.048

0.005

0.01

Length (m)

0.06 0.058

7.8%

 $\mathbf{0}_{2}$

4.8%

Result for Q = 180uL/min. **Top left:** O2 concentration profile. **Top right:** Flow profile. Bottom left: O2 concentration at the cell surface. Bottom right: Shear stress at the cell surface.

Pot1

0.015

0.4

0.3

0.2

0.1

0

0

0.005

0.01

Length (m)

7

6

5

4

3

2

0

0

Pot1

0.015

Question: can we capture an O2 range of 13%-4% at the cell layer in a single pot?

- Question: can we capture an O2 range of 13%-4% at the cell layer in a single pot?
 - > Explored flow rates ranging from 60-1000ul/min.
 - ➤ Gives O2 ranges from 3.9%-6.9% to 10.4%-12.2%.
 - Shear stress ranges from 1e-5 to 7e-4 N/m²
 - Increasing height of cells in pots increases min & max O2 as well as shear stress.

- Question: can we capture an O2 range of 13%-4% at the cell layer in a single pot?
- Question: can we capture an O2 range of 13%-4% at the cell layer across multiple pots?

Result for Q = 180uL/min. Left: O2 concentration profile. Right: Flow profile.

Result for Q = 180uL/min. Left: O2 concentration at the cell surface. Right: Shear stress at the cell surface.

Question: can we capture an O2 range of 13%-4% at the cell layer in a single pot?

Question: can we capture an O2 range of 13%-4% at the cell layer across multiple pots?

> O2 profiles, shear stress very similar in each chamber.

Question: can we capture an O2 range of 13%-4% at the cell layer in a single pot?

Question: can we capture an O2 range of 13%-4% at the cell layer across multiple pots?

> Question: can we exploit the vertical O2 gradient in the pots?

Result for Q = 180uL/min. Cell surface raised by 7mm, 3mm and 1mm in pots. Left: O2 concentration profile. Right: Flow profile.

Result for Q = 180uL/min. Cell surface raised by 7mm, 3mm and 1mm in pots. Left: O2 concentration at the cell surface. Right: Shear stress at the cell surface.

O2 ranges: pot 1, 9%-11.5%; pot 2, 7%-10%; pot 3, 5%-7.7%

Question: can we capture an O2 range of 13%-4% at the cell layer in a single pot?

Question: can we capture an O2 range of 13%-4% at the cell layer across multiple pots?

- Question: can we exploit the vertical O2 gradient in the pots?
 - O2 ranges: pot 1, 9%-11.5%; pot 2, 7%-10%; pot 3, 5%-7.7%.

Kirkstall QV – Zonated Liver Adaptation

Many thanks to...

National Centre for the Replacement Refinement & Reduction of Animals in Research

Parveen Sharma

Amy Chadwick

Joe Leedale

Harriet Gaskell

Marianne Ellis

Rebecca Shipley

John Ward

Sean McGinty

Loughborough University

