

National Centre for the Replacement **Refinement & Reduction** of Animals in Research

Introduction

A recent international consortium¹ reviewed the use of two species in drug development, concluding that current ICHS6(R1) approaches for use of a single species for long-term toxicity studies could be used more widely for biologics and other modalities, including small molecules². The cross-company dataset was examined to investigate how often new toxicities are identified in long-term (13, 26 or 39 week) toxicity studies in rodents and non-rodents and whether use of only one species would miss toxicities of concern for human safety.

Methods

Short-term studies were defined as ≤6 weeks and long-term studies as 13-39 weeks.

For rodents (31 molecules) and non-rodent (33 molecules) separately, toxicities in different target organs (high-level definitions, e.g. haematology, immune system etc) were compared between study durations and molecules were classified into those where new toxicities were identified in long-term studies, and those where no new effects were observed.

For 29 molecules with short and long-term studies in both rodent and non-rodent, the number of unique target organ toxicities identified in short-term studies were combined, and the identification of new toxicities in either rodent or non-rodent long-term study was noted. A hypothetical exercise was then conducted to evaluate if new toxicities would potentially be missed if only one of the species had been progressed to long-term studies.

Results

Figure 1. Common rodent target organ toxicities in short and long-term studies.

Table 1. The number of molecules with new toxicities identified in rodent long-term studies.

^a single new toxicity in 4 molecules, multiple new toxicities in 3 molecules

^b single new toxicity in 3 molecules, multiple new toxicities in 1 molecule

Figure 2. Common non-rodent target organ toxicities in short and long-term studies.

Table 2. The number of molecules with new toxicities identified in non-rodent long-term studies.

^a single new toxicity in 3 molecules, multiple new toxicities in 4 molecules

^b single new toxicity in 2 molecules, multiple new toxicities in 2 molecules

Incidence of new toxicities in biologics and small molecules upon long-term dosing

Helen Prior, Briony Labram and Fiona Sewell The National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK

	21 sma	ll molecul	10 biologics		
Tovicitico	New ^a		None	New ^b	None
IOXICITIES	7		14	4	6
Target organs	Bile ducts/live Skin (2) Female repro- Hematology Endocrine (1) Clinical chem Kidneys/urete Adrenal gland Eyes/optic ne	er (3) (2) (2) nistry (1) ers (1) ds (1) erve (1)		Skin (2) Skeleton (1) Adrenal glands (1) Other (1)	
16 14 12 12 10 8 10 6 4 2 2 0					 Short-term studies Long-term studies

	19 Small mole	ecules	14 biologics	
Toxicities	New ^a	None	New ^b	None
	7	12	4	10
Target organs	Immune system (2) Male repro (2) Kidneys/ureters (2) Female repro (1) Hematology (2) Bile ducts/liver (1) Clinical chemistry (1 Clinical signs (1) Adrenal glands (1) Idiopathic canine po GI tract/stomach/oes Skeleton (1)) Iyarteritis (1) sophagus (1)	Bile ducts/liver (2) Skeleton (2) Skin (1) Female repro (1) Heart/vascular tiss GI tract/stomach/ oesophagus (1) Lungs and respirat system (1)	sue (1) ory

Of 19 small molecules tested in both rodent and non-rodent short and long-term studies

Of 10 biologics tested in both rodent and non-rodent short and long-term studies

Results

Discussion

New toxicities are identified in longer-term studies in each species; the relative importance or impact of the new toxicity(ies) on molecule progression was not available within the dataset. There are no new toxicities identified in long-term studies for a significant proportion of molecules: 60% biologics and 67% small molecules (rodent) or 71% biologics and 63% small molecules (non-rodent).

When two species are used for short-term studies there are opportunities to reduce to only one species for longer-term studies. A key concern is how to identify the most appropriate species to progress from short-term study data such that human safety is not compromised.

For biologics, new long-term toxicities may have potentially been missed in 20% if the rodent only had progressed, or in 30% if the non-rodent only had progressed. For small molecules, new long-term toxicities may have been missed in 37% if the rodent only had progressed, or in a different 37% if the non-rodent only had progressed.

References

. Prior et al. (2018). Reviewing the Utility of Two Species in General Toxicology Related to Drug Development. International Journal of *Toxicology* 37: 121-124.

2. Prior *et al.* (2020). Opportunities for use of one species for longer-term toxicology testing during drug development: a cross-industry evaluation. Regulatory Toxicology & Pharmacology, DOI 10.1016/j. yrtph.2020.104624.