Skip to main content
NC3Rs | 20 Years: Pioneering Better Science

Dr Natalie Burden

Programme Manager – Environmental Safety
Portrait of Dr Natalie Burden

Natalie leads our programmes on toxicology and regulatory sciences focusing on environmental testing. She is a member of the Science and Technology Group.

View Natalie's Office-led projects.

NC3Rs publications

Burden N et al. (2023). An international cross-laboratory survey on fish vitellogenin analysis: Methodological challenges and opportunities for best practice. Regulatory Toxicology and Pharmacology, 145:105501. doi: 10.1016/j.yrtph.2023.105501

Brown RJ et al. (2023). Are changes in vitellogenin concentrations in fish reliable indicators of chemical-induced endocrine activity?.Ecotoxicology and Environmental Safety, 266: 115563. doi: 10.1016/j.ecoenv.2023.115563

Mitchell CA et al. (2023). New approach methodologies for the endocrine activity toolbox: Environmental assessment for fish and amphibians. Environmental Toxicology and Chemistry, 42(4): 757–777. doi: 10.1002/etc.5584

Langan LM et al. (2023). Big question to developing solutions: A decade of progress in the development of aquatic new approach methodologies from 2012 to 2022. Environmental Toxicology and Chemistry, advance online publication. doi: 10.1002/etc.5578

Burden, N et al. (2022) Investigating endocrine-disrupting properties of chemicals in fish and amphibians: Opportunities to apply the 3Rs. Integrated Environmental Assessment and Management18(2) 442-458doi: 10.1002/ieam.4497

Katsiadaki I et al. (2021) Dying for change: A roadmap to refine the fish acute toxicity test after 40 years of applying a lethal endpoint. Ecotoxicology and Environmental Safety, 223:112585. doi: 10.1016/j.ecoenv.2021.112585

Ortego LS et al. (2021) The Extended Amphibian Metamorphosis Assay: A thyroid-specific and less animal-intensive alternative to the Larval Amphibian Growth and Development Assay. Environmental Toxicology and Chemistry, 40(8):2135-2144. doi: 10.1002/etc.5078

Burden, N et al. (2021) Opportunities and challenges for integrating new in vitro methodologies in hazard testing and risk assessment. Small, 17(15):e2006298 doi: 10.1002/smll.202006298

Wheeler JR et al. (2021) Hormone data collection in support of endocrine disruption (ED) assessment for aquatic vertebrates: Pragmatic and animal welfare considerations. Environment International, 146:106287. doi: 10.1016/j.envint.2020.106287

Burden N et al. (2020) Key opportunities to replace, reduce and refine regulatory fish acute toxicity tests. Environmental Toxicology and Chemistry, 9(10):2076-2089. doi: 10.1002/etc.4824

Lagadic L et al. (2019) Recommendations for reducing the use of fish and amphibians in endocrine-disruption testing of biocides and plant protection products in Europe. Integrated Environmental Assessment and Management, 15(4), 659–662. doi: 10.1002/ieam.4156

Myatt GJ et al. (2018) In silico toxicology protocols. Regulatory Toxicology and Pharmacology, 96:1-17.  doi: 10.1016/j.yrtph.2018.04.014

Sewell F et al. (2018) The future trajectory of adverse outcome pathways: a commentary. Archives of Toxicology, 92(4):1657-1661. doi: 10.1007/s00204-018-2183-2

Burden N et al. (2017) Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities? Regulatory Toxicology and Pharmacology, 91:257-266. doi: 10.1016/j.yrtph.2017.10.021

Sewell F et al. (2017) Steps towards the international regulatory acceptance of non-animal methodology in safety assessment. Regulatory Toxicology and Pharmacology, 89:50-56. doi: 10.1016/j.yrtph.2017.07.001

Burden N et al. (2017) Reducing repetition of regulatory vertebrate ecotoxicology studies. Integrated Environmental Assessment and Management, 13(5):955-957. doi: 10.1002/ieam.1934

Sewell F et al. (2017) The current status of exposure-driven approaches for chemical safety assessment: A cross-sector perspective. Toxicology, 389:109-117. doi: 10.1016/j.tox.2017.07.018

Burden N et al. (2017) Maximizing the success of bile duct cannulation studies in rats: Recommendations for best practice. Laboratory Animals, 51(5):457-464. doi:10.1177/0023677217698001

Burden N et al. (2017) Reducing the number of fish in regulatory bioconcentration testing: Identifying and overcoming the barriers to using the 1-concentration approach. Integrated Environmental Assessment and Management, 13(1):212-214. doi:10.1002/ieam.1851

Burden N et al. (2017). The 3Rs as a framework to support a 21st century approach for nanosafety assessment. Nano Today, 12:10-13. doi:10.1016/j.nantod.2016.06.007

Lillicrap A et al. (2016) Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of developments over the last 2 decades and current status. Environmental Toxicology and Chemistry, 35(11):2637-2646. doi:10.1002/etc.3603

Burden N et al. (2016) The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach. Regulatory Toxicology and Pharmacology 80:241-246. doi:10.1016/j.yrtph.2016.05.032

Hutchinson TH et al. (2016) Promoting the 3Rs to enhance the OECD Fish Toxicity Testing Framework. Regulatory Toxicology and Pharmacology, 76:231-233. doi:10.1016/j.yrtph.2016.02.006

Burden N et al. (2015) Pioneering better science through the 3Rs: An introduction to the National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs). Journal of the American Association for Laboratory Animal Science, 54(2):198-208. PMCID: PMC4382625

Burden N et al. (2015) Advancing the 3Rs in regulatory ecotoxicology: A pragmatic cross-sector approach. Integrated Environmental Assessment and Management, 12(3):417-421. doi: 10.1002/ieam.1703

Burden N et al. (2015) Aligning the 3Rs with new paradigms in the safety assessment of chemicals. Toxicology, 330: 62-66. doi: 10.1016/j.tox.2015.01.014

Burden N et al. (2015) Adverse outcome pathways can drive non-animal approaches for safety assessment. Journal of Applied Toxicology, 35(9):971-975. doi: 10.1002/jat.3165

Burden N et al. (2015) Testing chemical safety: What is needed to ensure the widespread application of non-animal approaches? PLoS Biology, 13(5):e1002156. doi: 10.1371/journal.pbio.1002156

Burden N and Hutchinson TH (2015). Benefits of the ARRIVE guidelines for improving scientific reporting in ecotoxicology. Environmental Toxicology and Chemistry, 34(11):2446-2448. doi: 10.1002/etc.3111

Burden N et al. (2014) Reducing the number of fish in bioconcentration studies for general chemicals by reducing the number of test concentrations. Regulatory Toxicology and Pharmacology, 70(2): 442-445. doi: 10.1016/j.yrtph.2014.08.008

For additional publications, see Natalie's ResearchGate profile.


Postgraduate Certificate (PGCert), Chemical Risk Assessment
Brunel University London, 2014-2016

PhD, Neurophysiology
Brighton and Sussex Medical School, 2009-2012
Electrophysiological mechanisms underlying the neuritis model of chronic pain.