Skip to main content
NC3Rs | 20 Years: Pioneering Better Science
Project grant

Human pluripotent stem cell cardiomyocytes and hepatocytes with engineered genotypes for drug safety evaluation

Blue pipette tips

At a glance

Completed
Award date
April 2013 - April 2016
Grant amount
£414,536
Principal investigator
Professor Chris Denning

Co-investigator(s)

Institute
University of Nottingham

R

  • Replacement
Read the abstract
View the grant profile on GtR

Application abstract

Safety assessment of each new drug developed requires up to 1800 animals, which typically comprise non-rodent species (monkeys, dogs) and rodents (rats and mice). New EU regulations on toxicity testing (termed 'REACH') will use up to 54 million animals over the next 10 years to evaluate 30,000 compounds. Even with this level of animal use, preclinical assays are cited as only 71% predictive of whether a drug will be toxic in humans. Poor predictability is due to species differences and the inability to develop test platforms that mirror diverse human genotypes, particularly those associated with the high drug susceptibility seen in cardio- and hepato-toxicity. Adverse drug reactions account for 100,000 deaths per year in the US alone. To facilitate reduction and replacement of animal use, and to increase predictability to human toxicity, this proposal brings together a new consortium with skills in genome engineering (Skarnes, Rosen; Sanger Centre), human pluripotent stem cell biology and robotic automation (hPSC; Denning, Young; Nottingham) and toxicity testing (Goldring, Park; Liverpool). The aim is to engineer different patient-relevant mutations associated with drug susceptibility or resistance into the protein coding regions of otherwise genetically healthy hPSCs. Differentiating these cells will produce cardiomyocytes and hepatocytes that carry specific mutations within a common genetic background, allowing unbiased evaluation of how genotype-drug interaction affects cell structure, function and viability. Co-culturing cardiomyocytes with hepatocytes of different genotypes will allow the impact of altered hepatocyte function on cardiomyocytes to be assessed. Comparing these results with data from the literature and industrial partners will allow the predictive value of this humanised in vitro model to be determined. A 0.1% reduction in animal-based in vitro, ex vivo and in vivo tests has the potential to save up to 54,000 animals in Europe alone.

Publications

  1. James V et al. (2021). Transcriptomic Analysis of Cardiomyocyte Extracellular Vesicles in Hypertrophic Cardiomyopathy Reveals Differential snoRNA Cargo. Stem Cells and Development 30(24). doi: 10.1089/scd.2021.0202
  2. Kondrashov et al. (2020). CRISPR/Cas9-mediated generation and analysis of N terminus polymorphic models of β2AR in isogenic hPSC-derived cardiomyocytes. Molecular Therapy Methods & Clinical Development 20:39-53. doi: 10.1016/j.omtm.2020.10.019
  3. Saleem U et al. (2020). Force and Calcium Transients Analysis in Human Engineered Heart Tissues Reveals Positive Force-Frequency Relation at Physiological Frequency. Stem Cell Reports 14(2):312-24. doi: 10.1016/j.stemcr.2019.12.011
  4. Abakir A et al. (2019). N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nature Genetics 52:48-55. doi: 10.1038/s41588-019-0549-x
  5. Alvarez-Paino M et al. (2019). Polymer Microparticles with Defined Surface Chemistry and Topography Mediate the Formation of Stem Cell Aggregates and Cardiomyocyte Function. ACS Appl. Mater. Interfaces 11(38):34560–34574. doi: 10.1021/acsami.9b04769
  6. de Korte T et al. (2019). Unlocking Personalized Biomedicine and Drug Discovery with Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Fit for Purpose or Forever Elusive? Annual Review of Pharmacology and Toxicology 60:529-551. doi: 10.1146/annurev-pharmtox-010919-023309
  7. Howe CL et al. (2019). Surface plasmon resonance imaging of excitable cells. Journal of Physics D: Applied Physics 52(10):104001. doi: 10.1088/1361-6463/aaf849
  8. Mosqueira D et al. (2019). High-Throughput Phenotyping Toolkit for Characterizing Cellular Models of Hypertrophic Cardiomyopathy In VitroMethods and Protocols 2(4):83. doi: 10.3390/mps2040083
  9. Mosqueira D et al. (2019). Modeling Hypertrophic Cardiomyopathy: Mechanistic Insights and Pharmacological Intervention. Trends in Molecular Medicine 25(9):775-790. doi: 10.1016/j.molmed.2019.06.005
  10. Vaithilingam J et al. (2019). Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior. Advanced Functional Materials 29(38): e1902016. doi: 10.1002/adfm.201902016
  11. van Meer BJ et al. (2019). Simultaneous measurement of excitation-contraction coupling parameters identifies mechanisms underlying contractile responses of hiPSC-derived cardiomyocytes. Nature Communications. 10:4325. doi: 10.1038/s41467-019-12354-8
  12. Zhou X et al. (2019). Investigating the Complex Arrhythmic Phenotype Caused by the Gain-of-Function Mutation KCNQ1-G229D. Frontiers in Physiology 10:259. doi: 10.3389/fphys.2019.00259
  13. Kondrashov A et al. (2018). Simplified Footprint-Free Cas9/CRISPR Editing of Cardiac-Associated Genes in Human Pluripotent Stem Cells. Stem Cells and Development 27(6):391-404. doi: 10.1089/scd.2017.0268
  14. Mosqueira D et al. (2018). CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. European Heart Journal 39(43):3879-91. doi: 10.1093/eurheartj/ehy249
  15. Smith JGW et al. (2018). Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits. Stem Cell Reports 11(5):1226-1243. doi: 10.1016/j.stemcr.2018.10.006
  16. Duncan G et al. (2017). Drug-Mediated Shortening of Action Potentials in LQTS2 Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells and Development 26(23):1695-1705. doi: 10.1089/scd.2017.0172
  17. Goldring C et al. (2017). Stem cell-derived models to improve mechanistic understanding and prediction of human drug-induced liver injury. Hepatology 65(2):71-21. doi: 10.1002/hep.28886
  18. Denning C et al. (2016). Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochim Biophys Acta. 1863(7 Pt B):1728-48. doi: 10.1016/j.bbamcr.2015.10.014
  19. Dixon JE et al. (2016). Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides. PNAS 113(3):E291-9. doi: 10.1073/pnas.1518634113
  20. Hammad M et al. (2016). Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion. Biomaterials Science 4(9):1381-91. doi: 10.1039/c6bm00214e
  21. Kalra S et al. (2016). Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies? Journal of Neuromuscular Diseases 3(3):309-32. doi: 10.3233/JND-150133
  22. Patel A et al. (2016). High throughput screening for discovery of materials that control stem cell fate. Current Opinion in Solid State and Materials Science 20(4) doi: 10.1016/j.cossms.2016.02.002
  23. Rajamohan D et al. (2016). Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells and Development 25(6):439-52. doi: 10.1089/scd.2015.0253
  24. Celiz AD et al. (2015). Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation. Advanced Materials 27(27):4006-12. doi: 10.1002/adma.201501351
  25. Lin B et al. (2015). Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech. 8(5):457-66. doi: 10.1242/dmm.019505
  26. Patel AK et al. (2015). A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials 61: 257-65. doi: 10.1016/j.biomaterials.2015.05.019
  27. Ribeiro MC et al. (2015). Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro--correlation between contraction force and electrophysiology. 51(138-150). doi: 10.1016/j.biomaterials.2015.01.067
  28. Smith JG et al. (2015). Scaling human pluripotent stem cell expansion and differentiation: are cell factories becoming a reality? Regen Med. 10(8):925-30. doi: 10.2217/rme.15.65
  29. Celiz AD et al. (2014). Chemically diverse polymer microarrays and high throughput surface characterisation: a method for discovery of materials for stem cell culture. Biomaterials Science 2(11):1604-11. doi: 10.1039/c4bm00054d
  30. Celiz AD et al. (2014). Materials for stem cell factories of the future. Nature Materials 13(6):570-9. doi: 10.1038/nmat3972
  31. Dixon JE et al. (2014). Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. PNAS 111(15):5580-5. doi: 10.1073/pnas.1319685111
  32. Földes G et al. (2014). Aberrant α-adrenergic hypertrophic response in cardiomyocytes from human induced pluripotent cells. Stem Cell Reports. 3(5):905-14. doi:10.1016/j.stemcr.2014.09.002
  33. Matsa E et al. (2014). Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. Eur Heart J. 35(16):1078-87. doi: 10.1093/eurheartj/eht067