Skip to main content
NC3Rs | 20 Years: Pioneering Better Science
PhD Studentship

The validation of defined genotoxic thresholds, leading to better in vitro risk assessments of carcinogenic potential

Blue pipette tips

At a glance

Completed
Award date
October 2010 - September 2014
Grant amount
£120,000
Principal investigator
Professor Gareth Jenkins

Co-investigator(s)

Institute
Swansea University

R

  • Replacement
Read the abstract
View the grant profile on GtR

Application abstract

As part of the safety assessment of new chemicals (pharmaceuticals, pesticides etc), a tiered approach to genotoxicity (DNA damaging) testing is currently recommended. This approach is designed to prevent human exposures to agents that can damage DNA, as DNA damage is closely linked to cancer development. The tiered approach involves all chemicals entering stage 1 tests where DNA damage induction is assessed in cells cultured in the laboratory. Negative results in these tests reassure the manufacturer that DNA damage is unlikely to be induced by that agent. However, any chemicals testing positive in these tests are usually then put through stage 2 tests which are carried out in animals (mice usually). This can involve thousands of such animal tests being carried out in the UK per year. The stage 2 tests are designed to overcome problems with false positive results which can occur in stage 1 tests and also to more rigorously assess the risks to human health. The false positive results in stage 1 tests can often arise due to high doses of chemicals being used. High doses of chemical have traditionally been used to ensure that DNA damaging effects are identified and it has widely been assumed that the effects are induced in a linear manner. That is, if a high dose is positive, then a low dose will also be positive. We have recently shown how important dose can be in terms of DNA damage. We uniquely demonstrated that DNA damaging agents whilst giving positive results at high doses, are not DNA damaging at low doses. This confirms that "safe" doses exist, even for potent DNA damaging agents which are known to induce cancer. Hence, identifying these critical dose ranges is vital if we are to assess the effects of dose on DNA damage. If chemicals in stage 1 tests are only positive at high doses and not at low doses, and these positive effects were seen at doses estimated to be well above human exposures, then this would suggest that these chemicals would not be a human health risk. Importantly, the progression of these chemicals into stage 2 (animal) tests might not be necessary. Hence, by changing the testing strategy to consider the effects of dose, we could reduce the numbers of animal tests in toxicology. To add weight to the argument that DNA damaging thresholds exist and can be fully explained, we need high quality, cell-based studies of DNA damage induction for a wide range of chemicals. This application is aimed at supplying new knowledge in this field to impact on the testing strategies for DNA damage assessment with the ultimate aim of reducing the number of animal tests.

Impacts

Publications

  1. Wilde EC et al. (2018). A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells. Archives of Toxicology 92(2):935-51. doi: 10.1007/s00204-017-2102-y
  2. Chapman KE et al. (2017). Investigation of J-shaped dose-responses induced by exposure to the alkylating agent N-methyl-N-nitrosourea. Mutation Research 819:38-46. doi: 10.1016/j.mrgentox.2017.05.002
  3. Verma J et al. (2016). Evaluation of the automated MicroFlow® and Metafer™ platforms for high-throughput micronucleus scoring and dose response analysis in human lymphoblastoid TK6 cells. Archives of Toxicology 91(7):2689–2698. doi: 10.1007/s00204-016-1903-8
  4. Wills JW et al. (2016). Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™). Particle and Fibre Toxicology 13(1):50. doi: 10.1186/s12989-016-0161-5
  5. Chapman KE et al. (2015). Acute dosing and p53-deficiency promote cellular sensitivity to DNA methylating agents. Toxicological Sciences 14(2):357-365. doi: 10.1093/toxsci/kfv004
  6. Seager AL et al. (2014). Recommendations, evaluation and validation of a semi-automated, fluorescent-based scoring protocol for micronucleus testing in human cells. Mutagenesis 29(3):155-164. doi: 10.1093/mutage/geu008
  7. Chapman KE et al. (2014). Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses. Mutagenesis 29(3):165-75. doi: 10.1093/mutage/geu011