In silico human-based methodologies for evaluation of drug cardiac safety and efficacy

Cardiotoxicity is one of the leading causes of failure during drug development and also, more worrying, after marketing approval. Withdrawal due to cardiotoxicity has increased from 5.1 to 33%, including compounds to treat cardiovascular problems as well as drugs not intended to affect the heart such as antihistamines. Current used strategy to screen for adverse contractility effects involves a combination of preclinical in vitro pharmacological profiling, cardiomyocyte assays and in vivo cardiovascular (CVS) studies, and uses a variety of animal species (rats, mice, rabbits, guinea-pigs, dogs, pigs and non-human primates). 

In spite of the variety of animal methods for preclinical screening for drug safety, 20-50% of all advanced candidates have to be abandoned due to adverse outcomes, even late in the drug development process. 

The main aim is to accelerate the uptake of human-based in silico methodologies for evaluation of cardiac drug safety and efficacy in industry, regulatory and clinical settings.

The specific objectives include:

1) Review, collation and implementation of a comprehensive database of human electrophysiology and contractility in silico multiscale mechanistic models for specific cardiac disease conditions.

2) Development and qualification of in silico human models for the prediction of adverse outcomes in human cardiac electrophysiology and contractility for specific disease conditions, based on existing models, and calibration with in vivo and ex situ recordings.

3) Evaluation studies to compare in silico human-based predictions to clinical outcomes, current animal methods, and in vitro methods including stem cell derived cardiomyocytes.

4) Workshops and dissemination activities to identify and overcome barriers for the uptake of in silico methods in industrial, clinical and regulatory settings.

Project membership involves key partners across 11 countries who will raise the profile of in silico human models for the 3Rs.

Mincholé A and Rodriguez B (2019). Artificial intelligence for the electrocardiogram. Nature Medicine 25:22-23. doi: 10.1038/s41591-018-0306-1

Tomek J et al. (2019). Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. eLIFE 8:e48890. doi: 10.7554/eLife.48890

Tomek J et al. (2019). β-Adrenergic Receptor Stimulation and Alternans in the Border Zone of a Healed Infarct: An ex vivo Study and Computational Investigation of Arrhythmogenesis. Frontiers in Physiology 10:350. doi: 10.3389/fphys.2019.00350

Zhou X et al. (2019). Investigating the complex arrhythmic phenotype caused by the gain-of-function mutation KCNQ1-G229D. Frontiers in Physiology 10:259. doi: 10.3389/fphys.2019.00259

Briant LJB et al. (2018). δ-cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin. The Journal of physiology 596(2):197-215. doi: 10.1113/JP274581

Cardone-Noott L et al. (2018). Strategies of data layout and cache writing for input-output optimization in high performance scientific computing: Applications to the forward electrocardiographic problem. PLOS ONE 13(8):e0202410. doi: 10.1371/journal.pone.0202410

Grandi E et al. (2018). Editorial: Safety Pharmacology - Risk Assessment QT Interval Prolongation and Beyond. Frontiers in Physiology 9:678. doi: 10.3389/fphys.2018.00678

Muszkiewicz A et al. (2018). From ionic to cellular variability in human atrial myocytes: an integrative computational and experimental study. American journal of physiology. Heart and circulatory physiology 314(5):H895-H916. doi: 10.1152/ajpheart.00477.2017

Lawson BA et al. (2018). Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology. Science advances 4(1):e1701676. doi: 10.1126/sciadv.1701676

Lawson BA et al. (2018). Slow Recovery of Excitability Increases Ventricular Fibrillation Risk as Identified by Emulation. Frontiers in Physiology 8:597. doi: 10.3389/fphys.2018.01114

Lyon A et al. (2018). Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. Journal of the Royal Society, Interface 15(138). doi: 10.1098/rsif.2017.0821

Zhou X et al. (2018). In silico evaluation of arrhythmia. Current Opinion in Physiology 1:95-103. doi: 10.1016/j.cophys.2017.11.003

Briant LJB et al. (2017). Functional identification of islet cell types by electrophysiological fingerprinting. Journal of the Royal Society, Interface 14(128). doi: 10.1098/rsif.2016.0999

Britton OJ et al. (2017). The Electrogenic Na+/K+ Pump Is a Key Determinant of Repolarization Abnormality Susceptibility in Human Ventricular Cardiomyocytes: A Population-Based Simulation Study. Frontiers in Physiology 8:278. doi: 10.3389/fphys.2017.00278

Britton OJ et al. (2017). Quantitative Comparison of Effects of Dofetilide, Sotalol, Quinidine, and Verapamil between Human Ex vivo Trabeculae and In silico Ventricular Models Incorporating Inter-Individual Action Potential Variability. Frontiers in Physiology 8:597. doi: 10.3389/fphys.2017.00597

Bueno-Orovio A and Burrage K. (2017). Exact solutions to the fractional time-space Bloch-Torrey equation for magnetic resonance imaging. 52:91-109. doi: 10.1016/j.cnsns.2017.04.013

Paci M et al. (2017). Phenotypic variability in LQT3 human induced pluripotent stem cell-derived cardiomyocytes and their response to antiarrhythmic pharmacologic therapy: An in silico approach. Heart Rhythm 14:1704. doi: 10.1016/j.hrthm.2017.07.026

Passini E et al. (2017). Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Frontiers in Physiology 8:668. doi: 10.3389/fphys.2017.00668

Sánchez C et al. (2017). Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics. Frontiers in bioengineering and biotechnology 5:29. doi: 10.3389/fbioe.2017.00029

Tomek J et al. (2017). β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis. American journal of physiology. Heart and circulatory physiology 313(2):H338-H353. doi: 10.1152/ajpheart.00094.2017

Tixier E et al. (2017). Modelling variability in cardiac electrophysiology: a moment-matching approach. Journal of the Royal Society, Interface 14(133). doi: 10.1098/rsif.2017.0238

Zacur E et al. (2017). MRI-Based Heart and Torso Personalization for Computer Modeling and Simulation of Cardiac Electrophysiology. In: Cardoso M. et al. (eds) Imaging for Patient-Customized Simulations and Systems for Point-of-Care Ultrasound. BIVPCS 2017, POCUS 2017. Lecture Notes in Computer Science, vol 10549. Springer, Cham doi: 10.1007/978-3-319-67552-7_8

Back to top
Infrastructure grant

Grant reference number


Award date:

Sep 2016 - Feb 2022

Grant amount